Abstract

Objective(s):Lysine-specific demethylase1 (LSD1), an important class of histone demethylases, plays a crucial role in regulation of mammalian biology. The up-regulated LSD1 expression was frequently associated with progress and oncogenesis of multiple human cancers, including non-small cell lung cancer (NSCLC). Therefore, inhibition of LSD1 may provide an attractive strategy for cancer treatment. We investigated the effect of sanguinarine against lung cancer cells as a natural alkaloid LSD1 inhibitor. Materials and Methods:The inhibition properties of sanguinarine to the recombinant LSD1 were evaluated by a fluorescence-based method. Subsequently, assays such as viability, apoptosis, clonogenicity, wound healing, and transwell were performed on H1299 and H1975 cells after treatment with sanguinarine.Results:Upon screening our in-house natural chemical library toward LSD1, we found that sanguinarine possessed a potent inhibitory effect against LSD1 with the IC50 value of 0.4 μM in a reversible manner. Molecular docking simulation suggested that sanguinarine may inactivate LSD1 by inserting into the binding pocket of LSD1 to compete with the FAD site. In H1299 and H1975 cells, sanguinarine inhibited the demethylation of LSD1, validating its cellular activity against the enzyme. Further studies showed that sanguinarine exhibited a strong capacity to suppress colony formation, inhibit migration and invasion, as well as induce apoptosis of H1299 and H1975 cells. Conclusion:Our findings present a new chemical scaffold for LSD1 inhibitors, and also provide new insight into the anti-NSCLC action of sanguinarine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call