Abstract
Nowadays, high efficiency and low reflection electromagnetic interference (EMI) shielding materials have a wide potential application of electronic fields. However, it is still challenging to achieve long-term durability under external mechanical deformations or other harsh conditions. Herein, sandwich-structured surface coatings with a mixture of polydimethylsiloxane (PDMS)/carboxylated multiwalled carbon nanotube and magnetic ferriferous oxide nanoparticle hybrid fillers (MWCNTs-COOH/Fe3O4, MFs) are introduced onto a silver-decorated electrospun thermoplastic polyurethane (TPU) fibrous film to achieve both outstanding low reflective EMI shielding and favorable durability. The surface coatings not only act as an effective absorbing layer but also provide a micro-nano hierarchical superhydrophobic surface. The resultant film shows a remarkable conductivity (361.0 S/cm), an excellent EMI shielding effectiveness (SE) approaching 85.4 dB, and a low reflection coefficient value of 0.61. Interestingly, the obtained film still maintains an excellent EMI SE even after mechanical deformations or being immersed in strong acidic solution, alkaline solution, and organic solvents for 6 h. This work opens a new avenue for the design of low reflective EMI shielding films under harsh environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.