Abstract

Although the increased need for high-energy/power-density energy storage systems has revived the research on lithium metal batteries (LMBs), the influence of the separator on the performance of LMBs is still generally neglected. In the present study, a sandwich-structured separator (referred to as the CGC separator below) composed of two 2.5 µm thick cellulose nanofiber (CNF) surface layers and an intermediate 15 µm thick glass microfiber (GMF) and CNF composite layer is described. While the CNF surface layers of the CGC separator feature a homogeneous distribution of nano-sized pores favoring the attainment of a homogeneous current distribution at both electrodes, the intermediate GMF/CNF layer contains macropores facilitating the ionic transport through the separator. The CGC separator exhibited a much better electrolyte wettability and thermal stability compared to a Celgard separator, due to the use of the hydrophilic and thermally stable CNFs and GMFs. It is also shown that the combination of nano-sized and micro-sized fibers used in the CGC separator yields a higher ionic conductivity than that for the commercial separator (1.14 vs. 0.49 mS cm−1). Moreover, the influence of the separator pore structure (e.g. the porosity and pore distribution) on the performance of LMBs is studied for both Li anodes and LiFePO4 composite cathodes. The results demonstrate that the use of separators with high porosities and homogeneous surface pore distributions can improve the performances (e.g. capacities and stabilities) of LMBs considerably, and also highlights the importance of proper separator/electrode interactions. The present approach constitutes a practical engineering strategy for the production of separators with nano/micro fibers and a promising route for the development of LMBs with improved safety and enhanced electrochemical performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.