Abstract

A diabetic wound is a typical chronic wound with a long repair process and poor healing effects. It is an effective way to promote diabetic wound healing to design electrospinning nanofiber films with drug-assisted therapy, good air permeability and, a multilayer functional structure. In this paper, a diabetic wound dressing with a “sandwich-like” structure was designed. Metformin hydrochloride, loaded in the hydrophilic PVA inner layer, could effectively promote diabetic wound healing. The drug release was slowed down by osmosis. The laminate film dressing had good mechanical properties, with tensile strength and elongation at break reaching 5.91 MPa and 90.47 %, respectively, which was close to human skin. The laminate film loaded with erythromycin and puerarin in the hydrophobic PLA outer layer had good antibacterial properties. In addition, due to the high specific surface of the electrostatic spun film, it exhibited high water vapor permeability. It facilitates the gas exchange between the wound and the outside world. The cell experiments proved that the laminate film dressing had good biocompatibility. There was no toxic side effect on cell proliferation. In the diabetic animal wound model, it was shown that the closure rate of diabetic wound repair by laminate film reached 91.11 % in the second week. Our results suggest that the “sandwich-like” nanofiber film dressing could effectively promote the healing process and meet the various requirements of diabetic wound dressing as a promising candidate for future clinical application of chronic wound dressings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call