Abstract

AbstractLet ${\mathbb{G}(n_1,n_2,m)}$ be a uniformly random m-edge subgraph of the complete bipartite graph ${K_{n_1,n_2}}$ with bipartition $(V_1, V_2)$ , where $n_i = |V_i|$ , $i=1,2$ . Given a real number $p \in [0,1]$ such that $d_1 \,{:\!=}\, pn_2$ and $d_2 \,{:\!=}\, pn_1$ are integers, let $\mathbb{R}(n_1,n_2,p)$ be a random subgraph of ${K_{n_1,n_2}}$ with every vertex $v \in V_i$ of degree $d_i$ , $i = 1, 2$ . In this paper we determine sufficient conditions on $n_1,n_2,p$ and m under which one can embed ${\mathbb{G}(n_1,n_2,m)}$ into $\mathbb{R}(n_1,n_2,p)$ and vice versa with probability tending to 1. In particular, in the balanced case $n_1=n_2$ , we show that if $p\gg\log n/n$ and $1 - p \gg \left(\log n/n \right)^{1/4}$ , then for some $m\sim pn^2$ , asymptotically almost surely one can embed ${\mathbb{G}(n_1,n_2,m)}$ into $\mathbb{R}(n_1,n_2,p)$ , while for $p\gg\left(\log^{3} n/n\right)^{1/4}$ and $1-p\gg\log n/n$ the opposite embedding holds. As an extension, we confirm the Kim–Vu Sandwich Conjecture for degrees growing faster than $(n \log n)^{3/4}$ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call