Abstract

Sandwiched piezoelectric ultrasonic transducers of longitudinal-torsional compound vibrational modes were studied. The transducers consist of coaxially segmented, longitudinally and tangentially polarized piezoelectric ceramic rings, a back metal cylinder, and a front exponential solid metal horn. Based on the plane-wave approximation, the equivalent circuits of the longitudinal and torsional vibrations in the sandwiched transducer were obtained and the resonance frequency equations of the transducer in longitudinal and torsional vibrations were derived. By means of choosing the radius decay coefficient of the front exponential horn, the longitudinal and torsional vibrations are made to resonate at the same frequency in the transducer. Sandwiched piezoelectric ultrasonic transducers of longitudinal-torsional compound modes were designed and fabricated according to the frequency equations. It is demonstrated that the measured resonance frequencies of the transducers are in good agreement with the theoretical results, and the measured resonance frequencies of the transducers in longitudinal and torsional vibration modes are also in good agreement with each other. Theoretical and experimental results show that this kind of transducer can be used in ultrasonic welding, ultrasonic machining, ultrasonic motors, and other ultrasonic applications which need large displacement amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.