Abstract

The paper reports the fabrication of sandwich-type scaffolds consisting of radially-aligned nanofibers at the bottom, nanofiber membranes with square arrayed microwells and nanostructured cues at the top, and microskin tissues in between as microskin grafts for use in skin regeneration. This class of nanofiber scaffolds was able to confine the microskin tissues in the square arrayed wells and simultaneously present nanotopographic cues to the cultured NIH 3T3 fibroblasts and primary rat skin cells, guiding and facilitating their migration in vitro. More importantly, we demonstrated that the sandwich-type transplants exhibited an even distribution of microskin grafts, greatly improved the ‘take’ rate of microskin tissues, and promoted re-epithelialization on wound in vivo. In addition, the void area in the scaffolds was well suitable for exudate drainage in wound. The sandwich-type scaffolds show great potential as microskin grafts for repairing extensive burn injuries and may provide a good solution for the treatment of acute skin defects and chronic wounds including diabetic ulcer, pressure ulcer, and venous stasis ulcer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call