Abstract

The use of sandwich structures continues to increase rapidly for applications ranging from satellites, aircraft, ships, automobiles, rail cars, wind energy systems, and bridge construction to mention only a few. The many advantages of sandwich constructions, the development of new materials, and the need for high performance, low-weight structures insure that sandwich construction will continue to be in demand. The equations describing the behavior of sandwich structures are usually compatible with the equations developed for composite material thin-walled structures, simply by employing the appropriate in-plane, flexural, and transverse shear stiffness quantities. Only if a very flexible core is used, is a higher order theory needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.