Abstract

TaN/(Ta/Ti)/TiN multilayer films at various target to substrate distances (dts), composed of hexagonal TaN, (t-Ta/fcc-Ti) and fcc-TiN with a sandwich structure, were prepared via multi-arc ion plating. With increasing dts, the deposition rate of the films first increased and then decreased, and the average grain size increased from 11.9 to 13.9 nm and then decreased to 10.4 nm. The TaN/(Ta/Ti)/TiN multilayer films have a high ratio of hardness to elastic modulus (H/E*) and H3/E*2 ratios, displaying an outstanding level of both hardness and toughness compared with Ta-related films. The nano-multilayer TaTi interlayers inhibited the columnar structure and prolonged the corrosion diffusion path by increasing stable interfaces. The TaN/(Ta/Ti)/TiN multilayer film at dts = 220 mm exhibited comprehensive properties, including a high hardness of 25 GPa, strong adhesion strength of 68 N, low coefficient of friction of 0.41, low wear rate of 2.7 × 10−6 mm3(mN)−1 and great corrosion resistance in 3.5 wt% NaCl solution, showing promising application as a protective coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.