Abstract

Inadequate disposition and long period for degradation of Petroleum-derived polymers promote damages in the environment, which could be minimized by the use of biodegradable polymers such as starch and cellulose. Films of thermoplastic corn starch (TPS) and bacterial cellulose (BC) were used to produce sandwich panel biocomposite. RXD, SEM and FTIR were used to verify the transformation of TPS from native corn starch. TPS/BC is flexible and transparent, but it is less transparent that TPS and BC due to its multilayer format. TPS/BC presented similar thermal events to TPS and BC samples and thermal stability similar to TPS. The FTIR spectrum of the TPS/BC showed bands observed in the BC and TPS spectra. BC, TPS and TPS/BC showed faster water absorption in the initial stage reaching a stability at about 50 h and presenting Fickian behavior. TPS/BC showed lower water absorption and a good adhesion between the phases observed by SEM images, which can be associated to hydrogen interactions in the interface improving mechanical properties. TPS/BC showed an increase of about 3.6 times in the tensile strength compared to TPS, indicating that BC is a good reinforcement for TPS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call