Abstract
Advanced bone healing approaches included a wide range of biomaterials that mainly mimic the composition, structure, and properties of bone extracellular matrix with osteogenic activity. The present study aimed to develop a sandwich-like structure of electrospun nanofibers (NFs) based on polycaprolactone (PCL) and chitosan/polyethylene oxide (CS/PEO) composite to stimulate bone fracture healing. The morphology of the fabricated scaffolds was examined using scanning electron microscopy (SEM). Apatite deposition was evaluated using simulated body fluid (SBF). The physicochemical and mechanical properties of samples were analyzed by Fourier transform infrared, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and universal testing machine. SEM images exhibited a porous three-dimensional structure with NF diameters of 514-4745 nm and 68-786 nm for PCL NFs layer and the sandwich-like NFs scaffolds, respectively. Deposition of apatite crystal on scaffolds started at week 2 followed by heavy deposition at week 8. This was confirmed by measuring the consumption of calcium and phosphorous ions from SBF. Thermal stability of scaffolds was confirmed using DSC and TGA. Moreover, the PCL NF layer in the middle of the developed sandwich structure reinforced the scaffolds with bear load up to 12.224 ± 1.12 MPa and Young's modulus of 17.53 ± 3.24 MPa. The scaffolds' porous structure enhanced both cell propagation and proliferation. Besides, the presence of CS in the outer NF layers of the scaffolds increased the hydrophilicity, as evidenced by the reduction of contact angle from 116.6 to 57.6°, which is essential for cell attachment. Cell viability study on mesenchymal stem cells proved the cytocompatibility of the fabricated scaffolds. Finally, in vivo mandibular bone defect rabbit model was used to confirm the regeneration of a new healthy bone within 28 days. In conclusion, the developed scaffolds could be a promising solution to stimulate bone regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.