Abstract

Transition metal phosphides as ideal anodes have been attracted a large number of interests due to their excellent performance for lithium-ion batteries. Nevertheless, CoMoP2 materials were rarely reported as lithium-ion battery anode materials. Thereupon, to excavate their ability in LIBs, a sandwich-like architecture was employed as anode material, in which heterostructured CoMoP2 and MoP nanoparticles were coated on N, P co-doped carbon matrix. Notably, doped micro-lamellated carbon sheets could not only allow boosted lithium ion and electron transport but also alleviate the volume changes of active material to sustain anode integrity during the discharge/charge processes. More importantly, the combination of CoMoP2 and MoP nanoparticles could synergically strengthen the electrochemical activities of the anodes, and their built-in heterojunction facilitated the reaction kinetics on their interfaces. This research may offer a rational design on both heterostructure and doping engineering of future anodes for lithium-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call