Abstract

Tracing the presence of allergenic β-lactoglobulin (β-Lg) in infant foods is an urgent need, but the interference from the protein-rich matrix often hampered the detection accuracy. Here, we developed a sandwich assay for β-Lg in infant food formula based on a hierarchically architectured antifouling capture probe and fluorescent recognition probe. The antifouling capture probe was constructed from the polydopamine-coated magnetic particles (Fe3O4@PDA), which was modified with repeated glutamic acid-lysine (EK) antifouling peptide and aptamer towards β-Lg. The spatial arrangement of these ligands on the Fe3O4@PDA surface was carefully tailored. Furthermore, a fluorescent recognition probe based on aptamer-modified silica-doped carbon quantum dot was developed to explore a sandwich assay for β-Lg with the capture probe. The sandwich assay was proved to have high potential in detecting β-Lg in commercially available infant food samples. The work provided a new approach to developing detection methods with matrix interference-resistant properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.