Abstract

We numerically investigate the avalanche dynamics of the Bak–Tang–Wiesenfeld sandpile model on directed small-world networks. We find that the avalanche size and duration distribution follow a power law for all rewiring probabilities p. Specially, we find that, approaching the thermodynamic limit ( L→ ∞), the values of critical exponents do not depend on p and are consistent with the mean-field solution in Euclidean space for any p>0. In addition, we measure the dynamic exponent in the relation between avalanche size and avalanche duration and find that the values of the dynamic exponents are also consistent with the mean-field values for any p>0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.