Abstract

Abelian sandpile models, both deterministic, such as the Bak, Tang, Wiesenfeld (BTW) model [P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)] and stochastic, such as the Manna model [S.S. Manna, J. Phys. A 24, L363 (1991)] are studied on finite square lattices with open boundaries. The avalanche size distribution P(L)(n) is calculated for a range of system sizes, L. The first few moments of this distribution are evaluated numerically and their dependence on the system size is examined. The sandpile models are conservative in the sense that grains are conserved in the bulk and can leave the system only through the boundaries. It is shown that the conservation law provides an interesting connection between the sandpile models and random-walk models. Using this connection, it is shown that the average avalanche sizes <n>(L) for the BTW and Manna models are equal to each other, and both are equal to the average path length of a random walker starting from a random initial site on the same lattice of size L. This is in spite of the fact that the sandpile models with deterministic (BTW) and stochastic (Manna) toppling rules exhibit different critical exponents, indicating that they belong to different universality classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.