Abstract

The Mesoproterozoic Chuanlinggou Formation (ca. 1.7 Ga) consists mainly of dark-gray to black shales that are widespread in the North China Platform. Abundant centimeter-scale sand veins are present within the shale layers of this unit, particularly in the middle part. Sand veins display ptygmatic shapes, perpendicular or with a high angle to bedding planes. They penetrate the black shale layers but are often terminated by thin, lenticular sandstone beds, forming small-scale ‘tepee-like’ structures. On bedding planes, sand veins are expressed as small ridges with 1–3 mm positive relief. Lack of polygonal shapes and their occurrence in thinly laminated, relatively deep-water shales preclude an origin from sand-filled desiccation cracks. Instead, their close association with microbially induced sedimentary structures (MISS) such as micro-wrinkles and gas blisters, putative bacterial fossils (possibly coccoidal cyanobacteria) and framboidal pyrites, suggests that they were formed by degassing of methane from microbial mat decay. Methane gas disrupted overlying sedimentary layers, creating fractures open to seawater. Fine-grained quartz sands, which were transported into the depositional environment by strong winds, filled the fractures. Sand-filled fractures were shortened and folded during burial compaction, forming ptygmatic shapes. The presence of dispersed dolomite and siderite in these sand veins suggests authigenic carbonate precipitation from anaerobic oxidation of methane (AOM). Sand veins are intensely distributed within the Chuanlinggou Formation and are spatially widespread in the North China Platform. If their methane origin is confirmed, they may have important implications for the Mesoproterozoic paleoclimate. With anoxic oceans and low seawater sulfate concentration during the Mesoproterozoic, methane release from microbial mat decay and/or microbial methanogenesis during shallow burial may have been proportionally higher than that of the modern marine environments, with resultant increase in the relative importance of methane in maintaining the Mesoproterozoic greenhouse climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.