Abstract

From a phenomenological hydrodynamical model, we analyze the aeolian sand ripple evolution in an out-of-equilibrium aeolian regime where erosion exceeds accretion (and vice versa). We find, in particular, that the ripple structure can be destroyed in favor of a flat sand bed. In the ripple regime we report on a new class of generic dynamics described by the Benney equation. This equation reveals either order or disorder depending on whether wave dispersion is strong or weak. In both cases, the average wavelength of the pattern is fixed in time. This markedly contrasts with the regime of equilibrium aeolian regime -reached when erosion balances deposition- where ripples undergo a coarsening process at long time (i.e., the wavelength increases indefinitely with time).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.