Abstract

AbstractThis work presents measurements and analysis of sand particle velocities over a subaqueous dune with median sand diameter of 0.85 mm. Time‐lapse images of the mobile bed and an automated particle image velocimetry (PIV)‐based cross‐correlation method are used to obtain mean velocity of sand particles. This technique is shown to be consistent with measurements obtained with manual tracing. The measurements indicate an increase in mean particle velocity over a dune slope. Three regions are distinguished over the dune slope: (1) region of fluctuating particle velocity, (2) region of increasing particle velocity, and (3) region of maximum particle velocity. The observations are aligned with experimental and numerical modelling studies, indicating fluctuations in flow velocity over a dune stoss slope. We furthermore show that the standard deviation of the mean particle velocity is affected by the slope location and decreases from the lower slope towards the upper slope. The particle velocity variability is discussed in the context of general onset and cessation of sediment transport, the effect of the reattachment zone, sweep‐transport events, and the existence of superimposed bedforms. With this work we bridge the gap between measurements of bedload transport at the particle‐scale and at the bedform‐scale. © 2019 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.