Abstract

A worldwide database of liquefaction-induced sand blows has been compiled to generate empirical relationships between earthquake parameters and sand blow geometries. Curves resulting from these empirical relationships can be used afterwards for the study of historic and pre-historic earthquakes that formed sand blows. This database only incorporates instrumental earthquakes inducing sand blows, characterised in terms of magnitude (Mw), hypocentral location and focal mechanism solution. Two relationships are herein presented. The first curve, minimum likelihood of liquefaction occurrence (magnitude/epicentral distance), displays a logarithmic behaviour, as others already proposed. The second curve of sand-blow diameter vs epicentral distance is the first proposal of this kind, whose shape follows a negative power-law. Magnitude estimations of (pre-)historic earthquakes then may be attempted through these empirical relationships. Resulting magnitudes derived from these curves should be mostly considered as underestimated. The curves will reflect actual magnitudes only if, correspondingly, the farthest and largest blow has ever been reported during the after-earthquake survey. Following the same principle, a magnitude estimation resulting from the measuring of a sand blow can only be considered as minimal because it is almost impossible to ascertain that the measured feature is the biggest one produced by the earthquake under evaluation. Finally, these results call for thorough surveys of induced effects after every future moderate-to-large earthquake, as any empirical relationship simply improves by incorporating new data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.