Abstract
We study the problem of stable reconstruction of the short-time Fourier transform from samples taken from trajectories in {mathbb {R}}^2. We first investigate the interplay between relative density of the trajectory and the reconstruction property. Later, we consider spiraling curves, a special class of trajectories, and connect sampling and uniqueness properties of these sets. Moreover, we show that for window functions given by a linear combination of Hermite functions, it is indeed possible to stably reconstruct from samples on some particular natural choices of spiraling curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.