Abstract
Sampling refers to the process used to identify and select cases for analysis (i.e., a sample) with the goal of drawing meaningful research conclusions. Sampling is integral to the overall research process as it has substantial implications on the quality of research findings. Inappropriate sampling techniques can lead to problems of interpretation, such as drawing invalid conclusions about a population. Whereas sampling in quantitative research focuses on maximizing the statistical representativeness of a population by a chosen sample, sampling in qualitative research generally focuses on the complete representation of a phenomenon of interest. Because of this core difference in purpose, many sampling considerations differ between qualitative and quantitative approaches despite a shared general purpose: careful selection of cases to maximize the validity of conclusions. Achieving generalizability, the extent to which observed effects from one study can be used to predict the same and similar effects in different contexts, drives most quantitative research. Obtaining a representative sample with characteristics that reflect a targeted population is critical to making accurate statistical inferences, which is core to such research. Such samples can be best acquired through probability sampling, a procedure in which all members of the target population have a known and random chance of being selected. However, probability sampling techniques are uncommon in modern quantitative research because of practical constraints; non-probability sampling, such as by convenience, is now normative. When sampling this way, special attention should be given to statistical implications of issues such as range restriction and omitted variable bias. In either case, careful planning is required to estimate an appropriate sample size before the start of data collection. In contrast to generalizability, transferability, the degree to which study findings can be applied to other contexts, is the goal of most qualitative research. This approach is more concerned with providing information to readers and less concerned with making generalizable broad claims for readers. Similar to quantitative research, choosing a population and sample are critical for qualitative research, to help readers determine likelihood of transfer, yet representativeness is not as crucial. Sample size determination in qualitative research is drastically different from that of quantitative research, because sample size determination should occur during data collection, in an ongoing process in search of saturation, which focuses on achieving theoretical completeness instead of maximizing the quality of statistical inference. Theoretically speaking, although quantitative and qualitative research have distinct statistical underpinnings that should drive different sampling requirements, in practice they both heavily rely on non-probability samples, and the implications of non-probability sampling is often not well understood. Although non-probability samples do not automatically generate poor-quality data, incomplete consideration of case selection strategy can harm the validity of research conclusions. The nature and number of cases collected must be determined cautiously to respect research goals and the underlying scientific paradigm employed. Understanding the commonalities and differences in sampling between quantitative and qualitative research can help researchers better identify high-quality research designs across paradigms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.