Abstract
Statistical correction for measurement error in epidemiologic studies is possible, provided that information about the measurement error model and its parameters are available. Such information is commonly obtained from a randomly sampled internal validation sample. It is however unknown whether randomly sampling the internal validation sample is the optimal sampling strategy. We conducted a simulation study to investigate various internal validation sampling strategies in conjunction with regression calibration. Our simulation study showed that for an internal validation study sample of 40% of the main study’s sample size, stratified random and extremes sampling had a small efficiency gain over random sampling (10% and 12% decrease on average over all scenarios, respectively). The efficiency gain was more pronounced in smaller validation samples of 10% of the main study’s sample size (i.e., a 31% and 36% decrease on average over all scenarios, for stratified random and extremes sampling, respectively). To mitigate the bias due to measurement error in epidemiologic studies, small efficiency gains can be achieved for internal validation sampling strategies other than random, but only when measurement error is nondifferential. For regression calibration, the gain in efficiency is, however, at the cost of a higher percentage bias and lower coverage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.