Abstract

BackgroundGenes of the Major Histocompatibility Complex (MHC) are very popular genetic markers among evolutionary biologists because of their potential role in pathogen confrontation and sexual selection. However, MHC genotyping still remains challenging and time-consuming in spite of substantial methodological advances. Although computational haplotype inference has brought into focus interesting alternatives, high heterozygosity, extensive genetic variation and population admixture are known to cause inaccuracies. We have investigated the role of sample size, genetic polymorphism and genetic structuring on the performance of the popular Bayesian PHASE algorithm. To cover this aim, we took advantage of a large database of known genotypes (using traditional laboratory-based techniques) at single MHC class I (N = 56 individuals and 50 alleles) and MHC class II B (N = 103 individuals and 62 alleles) loci in the lesser kestrel Falco naumanni.FindingsAnalyses carried out over real MHC genotypes showed that the accuracy of gametic phase reconstruction improved with sample size as a result of the reduction in the allele to individual ratio. We then simulated different data sets introducing variations in this parameter to define an optimal ratio.ConclusionsOur results demonstrate a critical influence of the allele to individual ratio on PHASE performance. We found that a minimum allele to individual ratio (1:2) yielded 100% accuracy for both MHC loci. Sampling effort is therefore a crucial step to obtain reliable MHC haplotype reconstructions and must be accomplished accordingly to the degree of MHC polymorphism. We expect our findings provide a foothold into the design of straightforward and cost-effective genotyping strategies of those MHC loci from which locus-specific primers are available.

Highlights

  • Genes of the Major Histocompatibility Complex (MHC) are very popular genetic markers among evolutionary biologists because of their potential role in pathogen confrontation and sexual selection

  • Our results demonstrate a critical influence of the allele to individual ratio on PHASE performance

  • We found that a minimum allele to individual ratio (1:2) yielded 100% accuracy for both MHC loci

Read more

Summary

Introduction

Genes of the Major Histocompatibility Complex (MHC) are very popular genetic markers among evolutionary biologists because of their potential role in pathogen confrontation and sexual selection. We have investigated the role of sample size, genetic polymorphism and genetic structuring on the performance of the popular Bayesian PHASE algorithm To cover this aim, we took advantage of a large database of known genotypes (using traditional laboratory-based techniques) at single MHC class I (N = 56 individuals and 50 alleles) and MHC class II B (N = 103 individuals and 62 alleles) loci in the lesser kestrel Falco naumanni. Polymorphic genes of the Major Histocompatibility Complex (MHC) have become very popular molecular markers among evolutionary biologists because of their traditional consideration as ‘good genes’ involved in pathogen resistance and sexual selection (reviewed by [1,2]). Our mains goals were i) test the performance of analytical approaches to haplotype inference in the kestrel MHC, and ii) evaluate the influence of sample size, genetic polymorphism and genetic structure on the accuracy of computational approaches dealing with phase-unknown diploid genotypes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call