Abstract
Most models for reservoir operation optimization have employed either deterministic optimization or stochastic dynamic programming algorithms. This paper develops sampling stochastic dynamic programming (SSDP), a technique that captures the complex temporal and spatial structure of the streamflow process by using a large number of sample streamflow sequences. The best inflow forecast can be included as a hydrologic state variable to improve the reservoir operating policy. A case study using the hydroelectric system on the North Fork of the Feather River in California illustrates the SSDP approach and its performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.