Abstract

In bistable reaction-diffusion systems, transitions between stable states typically occur on timescales orders of magnitude longer than the chemical equilibration time. Estimation of transition rates within explicit Brownian dynamics simulations is computationally prohibitively costly. We present a method that exploits a single trajectory, generated by a prior simulation of diffusive motions of molecules, to sample chemical kinetic processes on timescales several orders of magnitude longer than the duration of the diffusive trajectory. In this approach, we "loop" the diffusive trajectory by transferring chemical states of the molecules from the last to the first time step of the trajectory. Trajectory looping can be applied to enhance sampling of rare events in biochemical systems in which the number of reacting molecules is constant, as in cellular signal transduction pathways. As an example, we consider a bistable system of autophosphorylating kinases, for which we calculate state-to-state transition rates and traveling wave velocities. We provide an open-source implementation of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.