Abstract

We view Shannon's sampling procedure as a problem of approximation in the space S = {s: s (x) = (c * sinc)(x)c ε l 2}. We show that under suitable conditions on a generating function λ ε L 2, the approximation problem onto the space V = {v:v(x) = (c * λ)(x)c ε l 2} produces a sampling procedure similar to the classical one. It consists of an optimal prefiltering, a pure jitter-stable sampling, and a postfiltering for the reconstruction. We describe equivalent signal representations using generic, dual, cardinal, and orthogonal basis functions and give the expression of the corresponding filters. We then consider sequences λn, where λn denotes the n-fold convolution of λ. They provide a sequence of increasingly regular sampling schemes as the value of n increases. We show that the cardinal and orthogonal pre- and postfilters associated with these sequences asymptotically converge to the ideal lowpass filter of Shannon. The theory is illustrated using several eamples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.