Abstract
Sampling is a basic operation in image processing. In previous literature, a morphological sampling theorem has been established showing how sampling interacts with image reconstruction by morphological operations. However, while many aspects of morphological sampling have been investigated for binary images in classic works, only some of them have been extended to grey scale imagery. Especially, previous attempts to study the relation between sampling and grey scale morphology are restricted by construction to flat morphological filters. In order to establish a sampling theory for non-flat morphology, we establish an alternative definition for grey scale opening and closing relying on the umbra notion. Making use of this, we prove a sampling theorem about the interaction of sampling with fundamental morphological operations for non-flat morphology. This allows to make precise corresponding relations between sampling and image reconstruction, extending classic results for flat morphology of grey value images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.