Abstract
Correspondence-based six-degree-of-freedom (6-DoF) pose estimation remains a mainstream solution for 3D point cloud registration. However, the heavy outliers pose great challenges to this problem. In this paper, we propose a random sample consensus (RANSAC) variant based on sampling locally and hypothesis globally (SLHG) for 6-DoF pose estimation and 3D point cloud registration. The key novelties are efficient sampling by guiding the sampling process locally and accurate pose estimation by generating hypotheses with global information. SLHG first generates a correspondence subset via compatibility clustering on the initial set. Second, locally guided graph sampling is performed. Third, 6-DoF hypotheses are generated by incorporating global information with a voting scheme. The best hypothesis serves as the estimation result by repeating the second and third steps. Extensive experiments on four popular datasets and comparisons with state-of-the-art methods confirm that: SLHG manages to 1) achieve accurate registrations with a few iterations, and 2) yield better accuracy performance than most competitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.