Abstract
A common problem in Bayesian inference is the sampling of target probability distributions at sufficient resolution and accuracy to estimate the probability density, and to compute credible regions. Often by construction, many target distributions can be expressed as some higher-dimensional closed-form distribution with parametrically constrained variables, i.e., one that is restricted to a smooth submanifold of Euclidean space. I propose a derivative-based importance sampling framework for such distributions. A base set of $n$ samples from the target distribution is used to map out the tangent bundle of the manifold, and to seed $nm$ additional points that are projected onto the tangent bundle and weighted appropriately. The method essentially acts as an upsampling complement to any standard algorithm. It is designed for the efficient production of approximate high-resolution histograms from manifold-restricted Gaussian distributions, and can provide large computational savings when sampling directly from the target distribution is expensive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.