Abstract

Water quality monitoring networks (WQMNs) that capture both the temporal and spatial dimensions are essential to provide reliable data for assessing water quality trends in surface waters, as well as for supporting initiatives to control anthropogenic activities. Meeting these monitoring goals as efficiently as possible is crucial, especially in developing countries where the financial resources are limited and the water quality degradation is accelerating. Here, we asked if sampling frequency could be reduced while maintaining the same degree of information as with bimonthly sampling in the São Paulo State (Brazil) WQMN. For this purpose, we considered data from 2004 to 2018 for 56 monitoring sites distributed into four out of 22 of the state's water resources management units (UGRHIs, "Unidades de Gerenciamento de Recursos Hídricos"). We ran statistical tests for identifying data redundancy among two-month periods in the dry and wet seasons, followed by objective criteria to develop a sampling frequency recommendation. Our results showed that the reduction would be feasible in three UGRHIs, with the number of annual samplings ranging from two to four (instead of the original six). In both seasons, dissolved oxygen and Escherichia coli required more frequent sampling than the other analyzed parameters to adequately capture variability. The recommendation was compatible with flexible monitoring strategies observed in well-structured WQMNs worldwide, since the suggested sampling frequencies were not the same for all UGRHIs. Our approach can contribute to establishing a methodology to reevaluate WQMNs, potentially resulting in less costly and more adaptive strategies in São Paulo State and other developing areas with similar challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call