Abstract

We present a sampling-free implementation of a linear Bayesian filter based on a square root formulation. It employs spectral series expansions of the involved random variables, one such example being Wiener's polynomial chaos. The method is compared to several related methods, as well as a full Bayesian update, on a simple scalar example. Additionally it is applied to a combined state and parameter estimation problem for a chaotic system, the well-known Lorenz-63 model. There, we compare it to the ensemble square root filter (EnSRF), which is essentially a probabilistic implementation of the same underlying estimator. The spectral method is found to be more robust than the probabilistic one, especially for variance estimation. This is to be expected due to the sampling-free implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.