Abstract

Discretization of the uniform norm of functions from a given finite dimensional subspace of continuous functions is studied. We pay special attention to the case of trigonometric polynomials with frequencies from an arbitrary finite set with fixed cardinality. We give two different proofs of the fact that for any N-dimensional subspace of the space of continuous functions it is sufficient to use $$e^{CN}$$ sample points for an accurate upper bound for the uniform norm. Previous known results show that one cannot improve on the exponential growth of the number of sampling points for a good discretization theorem in the uniform norm. Also, we prove a general result, which connects the upper bound on the number of sampling points in the discretization theorem for the uniform norm with the best m-term bilinear approximation of the Dirichlet kernel associated with the given subspace. We illustrate the application of our technique on the example of trigonometric polynomials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.