Abstract

This paper makes two contributions to the computational geometry of decomposable graphs, aimed primarily at facilitating statistical inference about such graphs where they arise as assumed conditional independence structures in stochastic models. The rst of these provides sucient conditions under which it is possible to completely connect two disconnected cliques of vertices, or perform the reverse procedure, yet maintain decomposability of the graph. The second is a new Markov chain Monte Carlo sampler for arbitrary positive distributions on decomposable graphs, taking a junction tree representing the graph as its state variable. The resulting methodology is illustrated with two numerical experiments. eld, model determination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.