Abstract

In semiconductor manufacturing, metrology operations are so expensive and time-consuming that only a certain number of wafers are measured. For that reason, one is interested in developing Virtual Metrology (VM) methodologies predicting wafer fine metrology results in real-time and free of costs. However, currently used sampling designs do not take account of such information. In this paper, we present a sampling decision system (SDS) that relies on virtual metrology data suggesting an optimal strategy for measuring productive wafers. Considering control charts within a decision-theoretical framework, the expected value of measurement information is computed by means of Monte Carlo (MC) integration; this is a way to assess the informational gain resulting from a measurement. Optimal sampling decisions are obtained using a two-stage decision model. Extensions of the SDS consider bad wafer quality risk and fixed real metrology operations by cumulating past decision risks. A Bayesian conjugate Wishart model allows to update uncertainty of virtual measurements whenever a real measurement is available. The sampling decision system is extended to a set of virtual and real metrology data from the semiconductor industry. Wafer measurements are only performed when really needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.