Abstract

We propose three sampling-based motion planning algorithms for generating informative mobile robot trajectories. The goal is to find a trajectory that maximizes an information quality metric (e.g. variance reduction, information gain, or mutual information) and also falls within a pre-specified budget constraint (e.g. fuel, energy, or time). Prior algorithms have employed combinatorial optimization techniques to solve these problems, but existing techniques are typically restricted to discrete domains and often scale poorly in the size of the problem. Our proposed rapidly exploring information gathering (RIG) algorithms combine ideas from sampling-based motion planning with branch and bound techniques to achieve efficient information gathering in continuous space with motion constraints. We provide analysis of the asymptotic optimality of our algorithms, and we present several conservative pruning strategies for modular, submodular, and time-varying information objectives. We demonstrate that our proposed techniques find optimal solutions more quickly than existing combinatorial solvers, and we provide a proof-of-concept field implementation on an autonomous surface vehicle performing a wireless signal strength monitoring task in a lake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.