Abstract
In this article, the exponential synchronization control issue of reaction-diffusion neural networks (RDNNs) is mainly resolved by the sampling-based event-triggered scheme under Dirichlet boundary conditions. Based on the sampled state information, the event-triggered control protocol is updated only when the triggering condition is met, which effectively reduces the communication burden and saves energy. In addition, the proposed control algorithm is combined with sampled-data control, which can effectively avoid the Zeno phenomenon. By thinking of the proper Lyapunov-Krasovskii functional and using some momentous inequalities, a sufficient condition is obtained for RDNNs to achieve exponential synchronization. Finally, some simulation results are shown to demonstrate the validity of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.