Abstract

The fractional Fourier transform (FRFT) has become a very active area in signal processing community in recent years, with many applications in radar, communication, information security, etc., This study carefully investigates the sampling of a continuous-time band limited signal to obtain its discrete-time version, as well as sampling rate conversion, for the FRFT. Firstly, based on product theorem for the FRFT, the sampling theorems and reconstruction formulas are derived, which explain how to sample a continuous-time signal to obtain its discrete-time version for band limited signals in the fractional Fourier domain. Secondly, the formulas and significance of decimation and interpolation are studied in the fractional Fourier domain. Using the results, the sampling rate conversion theory for the FRFT with a rational fraction as conversion factor is deduced, which illustrates how to sample the discrete-time version without aliasing. The theorems proposed in this study are the generalizations of the conventional versions for the Fourier transform. Finally, the theory introduced in this paper is validated by simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.