Abstract
Gaseous formaldehyde is sampled by derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) adsorbed onto poly (dimethylsiloxane)/divinylbenzene solid-phase microextraction fibers. The product of the reaction is an oxime which is thermally very stable and insensitive to light. The oxime can be analyzed by gas chromatography with flame ionization detection and other detectors. Loading PFBHA on the fiber is by room-temperature headspace extraction from aqueous solutions of PFBHA. The process of loading and desorption of unreacted PFBHA, and oxime formed, is both highly reproducible and reversible, with more than 200 loading, sampling, and analysis steps possible with one fiber. The standard formaldehyde gas concentrations studied ranged from 15 to 3200 ppbv with sampling times from 10 s to 12 min. Quantification can be achieved via interpolation from calibration curves of area counts as a function of formaldehyde concentration for a fixed sampling time. Sampling for 10 s yields a method detection limit of 40 ppbv and at 300 s the method detection limit is 4.6 ppbv. This is equal to or better than all other conventional grab sampling methods for gaseous formaldehyde employing sampling trains or passive sampling techniques. Alternatively, gaseous formaldehyde can be quantified with an empirically established apparent first-order rate constant (0.0030 ng/(ppbv s) at 25 °C) for the reaction between sorbed PFBHA and gaseous formaldehyde. This first-order rate constant allows for quantitative analyses without a calibration curve, only requiring detector calibration with the oxime. This new method was used for the headspace sampling of air known to contain formaldehyde, as well as other carbonyl compounds, and from various matrixes such as cosmetics and building products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.