Abstract

Simplices are the fundamental domain when integrating over convex polytopes. The aim of this work is to establish a novel framework of Monte Carlo integration over simplices, throughout from sampling to variance reduction. Namely, we develop a uniform sampling method on the standard simplex consisting of two independent procedures and construct theories on change of measure on each of the two independent elements in the developed sampling technique with a view towards variance reduction by importance sampling. We provide illustrative figures and numerical results to support our theoretical findings and demonstrate the strong potential of the developed framework for effective implementation and acceleration of Monte Carlo integration over simplices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.