Abstract
In this paper, a sampled-data iterative learning control (ILC) method is proposed for a class of nonlinear continuous-time systems with higher-order relative degree. The learning control does not require differentiation of tracking error. As the sampling period is set to be small enough, a sufficient condition is derived to guarantee the convergence of the learning process. This method can be applied to a more general class of nonlinear continuous-time systems that the most existing ILC methods fail to work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.