Abstract

This paper considers a stability analysis problem for continuous-time Markovian jump linear systems under aperiodic samplings which are represented as Markovian jump linear systems with input delay. For the systems, this paper constructs a Lyapunov functional by utilizing a fragmented-delay state, which is defined between the last sampling instant and the present time, and a new state space model of the fragmented state. Based on the Lyapunov functional, a stability criterion is derived in terms of linear matrix inequalities by using reciprocally convex approach and integral inequality. Here, the reciprocally convex approach and integral inequality are associated not only with the current state, the delayed state, and the maximum-admissible delay state, but also with the fragmented-delay state. The simulation result shows the effectiveness of the proposed stability criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.