Abstract

This paper investigates the stabilization issue for a class of sampled-data nonlinear Markov switching system with indistinguishable modes. In order to handle indistinguishable modes, the authors reconstruct the original mode space by mode clustering method, forming a new merged Markov switching system. By specifying the difference between the Euler-Maruyama (EM) approximate discrete-time model of the merged system and the exact discrete-time model of the original Markov switching system, the authors prove that the sampled-data controller, designed for the merged system based on its EM approximation, can exponentially stabilize the original system in mean square sense. Finally, a numerical example is given to illustrate the effectiveness of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call