Abstract

Most extremum-seeking control (ESC) approaches focus solely on the problem of finding the extremum of some unknown, steady-state input–output map, providing parameter settings that lead to optimal steady-state system performance. However, many industrial applications also have to deal with constraints on operating conditions due to, e.g., actuator limitations, limitations on tunable system parameters, or constraints on measurable variables. In particular, constraints on measurable variables are typically unknown in terms of their relationship with the tunable system parameters. In addition, the constraints on system inputs as a result of the constraints on measurable variables may conflict with the otherwise optimal operational condition, and hence should be taken into account in the data-based optimization approach. In this work, we propose a sampled-data extremum-seeking framework for the constrained optimization of a class of nonlinear dynamical systems with measurable constrained variables. In this framework, barrier function methods are employed, exploiting both the objective function and constraint functions which are available through output measurement only. We show, under the assumption that the parametric initialization yield operating conditions that do not violate the constraints, that (1) the resulting closed-loop dynamics is stable, (2) constraint satisfaction of the inputs is guaranteed for all iterations of the optimization process, and (3) constrained optimization is achieved. We illustrate the working principle of the proposed framework by means of an industrial case study of the constrained optimization of extreme ultraviolet light generation in a laser-produced plasma source within a state-of-the-art lithography system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call