Abstract

This article is devoted to dealing with exponential synchronization for inertial neural networks (INNs) with heterogeneous time-varying delays (HTVDs) under the framework of aperiodic sampling and state quantization. First, by taking the effect of aperiodic sampling and state quantization into consideration, a novel quantized sampled-data (QSD) controller with time-varying control gain is designed to tackle the exponential synchronization of INNs. Second, considering the available information of the lower and upper bounds of each HTVD, a refined Lyapunov-Krasovskii functional (LKF) is proposed. Meanwhile, an improved looped-functional method is utilized to fully capture the characteristic of practical sampling patterns and further relax the positive definiteness requirement for LKF. Consequently, less conservative exponential synchronization conditions with extra flexibility are derived. Finally, a numerical example is employed to demonstrate the effectiveness and advantages of the proposed synchronization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.