Abstract
This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain. In order to better investigate uncertain suspension dynamics, the sampled-data Takagi-Sugeno (T-S) fuzzy half-car active suspension (HCAS) system is considered, which is further modelled as a continuous system with an input delay. Firstly, considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay, a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system. Secondly, since external disturbances often belong to a restricted frequency range, a finite frequency control criterion is presented for control synthesis to reduce conservatism. Thirdly, given a full information of state variables is hardly available in practical suspension systems, a two-stage method is proposed to calculate the static output feedback control gains. Moreover, an iterative algorithm is proposed to compute the optimum solution. Finally, numerical simulations verify the effectiveness of the proposed controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.