Abstract

Sample thickness is a decisive parameter for any quantification of image information and composition in transmission electron microscopy. In this context, we present a method to determine the local sample thickness by scanning transmission electron microscopy at primary energies below 30 keV. The image intensity is measured with respect to the intensity of the incident electron beam and can be directly compared with Monte Carlo simulations. Screened Rutherford and Mott scattering cross-sections are evaluated with respect to fitting experimental data with simulated image intensities as a function of the atomic number of the sample material and primary electron energy. The presented method is tested for sample materials covering a wide range of atomic numbers Z, that is, fluorenyl hexa-peri-hexabenzocoronene (Z = 3.5), carbon (Z = 6), silicon (Z = 14), gallium nitride (Z = 19), and tungsten (Z = 74). Investigations were conducted for two primary energies (15 and 30 keV) and a sample thickness range between 50 and 400 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.