Abstract

In this study, a sample stacking step coupled with microemulsion electrokinetic chromatography (MEEKC) was used to detect and analyze nine aromatic acids (benzoic acid (BA), isophthalic acid (IPA), terephthalic acid (TPA), p-toluic acid ( p-TA), 4-carboxylbenzaldehyde (4-CBA), trimesic acid (TSA), trimellitic acid (TMA), o-phthalic acid (OPA), and hemimellitic acid (HMA)) which are common impurities produced during aromatic acid synthesis. First, the presence of both acid and water plugs at the front of the capillary improved the reproducibility in retention time and peak intensity of the tested analytes in the stacking method. Second, the pH and the electrolyte type of acidic plug and sample matrix were found to be the predominant influences on the aromatic acid stacking. The detection limits of these aromatic acids were reduced to the range of 0.00007–0.00032 μg mL −1 by this optimal sample stacking step. This proposed on-line concentration MEEKC method was able to detect trace levels of aromatic acid impurities in commercial aromatic acid products that were not previously possible by the normal MEEKC method. Furthermore, these results in comparison with our previous studies on sample stacking MEEKC method indicated that all acidic species were concentrated by this simple stacking procedure. The sensitivity enhancement, however, was highly dependent on the types of functional groups present in the structures of analytes, and the enhancement was in the order of first the compounds carrying both carboxy and hydroxy groups (e.g. phenolic acid), followed by carboxylic acid compounds (e.g. aromatic acid), and then phenol compounds (e.g. polyphenol).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.