Abstract
When using multiple regression for prediction purposes, the issue of minimum required sample size often needs to be addressed. Using a Monte Carlo simulation, models with varying numbers of independent variables were examined and minimum sample sizes were determined for multiple scenarios at each number of independent variables. The scenarios arrive from varying the levels of correlations between the criterion variable and predictor variables as well as among predictor variables. Two minimum sample sizes were determined for each scenario, a good and an excellent prediction level. The relationship between the squared multiple correlation coefficients and minimum necessary sample sizes were examined. A definite relationship, similar to a negative exponential relationship, was found between the squared multiple correlation coefficient and the minimum sample size. As the squared multiple correlation coefficient decreased, the sample size increased at an increasing rate. This study provides guidelines for sample size needed for accurate predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.