Abstract

In some diseases, such as multiple sclerosis, lesion counts obtained from magnetic resonance imaging (MRI) are used as markers of disease progression. This leads to longitudinal, and typically overdispersed, count data outcomes in clinical trials. Models for such data invariably include a number of nuisance parameters, which can be difficult to specify at the planning stage, leading to considerable uncertainty in sample size specification. Consequently, blinded sample size re-estimation procedures are used, allowing for an adjustment of the sample size within an ongoing trial by estimating relevant nuisance parameters at an interim point, without compromising trial integrity. To date, the methods available for re-estimation have required an assumption that the mean count is time-constant within patients. We propose a new modeling approach that maintains the advantages of established procedures but allows for general underlying and treatment-specific time trends in the mean response. A simulation study is conducted to assess the effectiveness of blinded sample size re-estimation methods over fixed designs. Sample sizes attained through blinded sample size re-estimation procedures are shown to maintain the desired study power without inflating the Type I error rate and the procedure is demonstrated on MRI data from a recent study in multiple sclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.