Abstract

Quadratic inference functions (QIF) methodology is an important alternative to the generalized estimating equations (GEE) method in the longitudinal marginal model, as it offers higher estimation efficiency than the GEE when correlation structure is misspecified. The focus of this paper is on sample size determination and power calculation for QIF based on the Wald test in a marginal logistic model with covariates of treatment, time, and treatment-time interaction. We have made three contributions in this paper: (i) we derived formulas of sample size and power for QIF and compared their performance with those given by the GEE; (ii) we proposed an optimal scheme of sample size determination to overcome the difficulty of unknown true correlation matrix in the sense of minimal average risk; and (iii) we studied properties of both QIF and GEE sample size formulas in relation to the number of follow-up visits and found that the QIF gave more robust sample sizes than the GEE. Using numerical examples, we illustrated that without sacrificing statistical power, the QIF design leads to sample size saving and hence lower study cost in comparison with the GEE analysis. We conclude that the QIF analysis is appealing for longitudinal studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.